On the Maximum Crossing Number
نویسندگان
چکیده
Research about crossings is typically about minimization. In this paper, we consider maximizing the number of crossings over all possible ways to draw a given graph in the plane. Alpert et al. [1] conjectured that any graph has a convex straight-line drawing, e.g., a drawing with vertices in convex position, that maximizes the number of edge crossings. We disprove this conjecture by constructing a planar graph on twelve vertices that allows a non-convex drawing with more crossings than any convex one. Bald et al. [2] showed that it is NP-hard to compute the maximum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case and prove that the unweighted topological case is NP-hard.
منابع مشابه
METAHEURISTIC ALGORITHMS FOR MINIMUM CROSSING NUMBER PROBLEM
This paper presents the application of metaheuristic methods to the minimum crossing number problem for the first time. These algorithms including particle swarm optimization, improved ray optimization, colliding bodies optimization and enhanced colliding bodies optimization. For each method, a pseudo code is provided. The crossing number problem is NP-hard and has important applications in eng...
متن کاملLower bounds on the maximum number of non-crossing acyclic graphs
This paper is a contribution to the problem of counting geometric graphs on point sets. More concretely, we look at the maximum numbers of non-crossing spanning trees and forests. We show that the so-called double chain point configuration of N points has Ω(12.52 ) noncrossing spanning trees and Ω(13.61 ) non-crossing forests. This improves the previous lower bounds on the maximum number of non...
متن کاملThe Maximum of the Maximum Rectilinear Crossing Numbers of d-Regular Graphs of Order n
We extend known results regarding the maximum rectilinear crossing number of the cycle graph (Cn) and the complete graph (Kn) to the class of general d-regular graphs Rn,d. We present the generalized star drawings of the d-regular graphs Sn,d of order n where n + d ≡ 1 (mod 2) and prove that they maximize the maximum rectilinear crossing numbers. A star-like drawing of Sn,d for n ≡ d ≡ 0 (mod 2...
متن کاملA Study of Pedestrian Movement on Crosswalks Based on Chaos Theory
Walking, as an important transportation mode, plays a large part in urban transportation systems. This mode is of great importance for planners and decision-makers because of its impact on environmental and health aspects of communities. However, this mode is so complex in nature that makes it difficult to study or model. On the other hand, chaos theory studies complex dynamical nonlinear syste...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملCrossing-critical graphs with large maximum degree
A conjecture of Richter and Salazar about graphs that are critical for a fixed crossing number k is that they have bounded bandwidth. A weaker well-known conjecture is that their maximum degree is bounded in terms of k. In this note we disprove these conjectures for every k ≥ 171, by providing examples of k-crossing-critical graphs with arbitrarily large maximum degree. A graph is k-crossing-cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Graph Algorithms Appl.
دوره 22 شماره
صفحات -
تاریخ انتشار 2018